Haku

Haitallisten orgaanisten yhdisteiden ja lääkeaineiden esiintyminen biokaasulaitosten käsittelyjäännöksissä sekä niiden elintarvikeketjuun aiheuttaman vaaran arviointi

QR-koodi

Haitallisten orgaanisten yhdisteiden ja lääkeaineiden esiintyminen biokaasulaitosten käsittelyjäännöksissä sekä niiden elintarvikeketjuun aiheuttaman vaaran arviointi

In this study, the concentrations of hazardous organic compounds and pharmaceuticals in biogas plant digestates were analyzed. In addition, the risk for food safety, caused by the use of digestate as a fertilizer in agriculture, was examined. Most of the centralized Finnish biogas plants, which used various waste materials as substrate, took part in the study. The following groups of organic compounds were analyzed: polychlorinated dibenzo-p-dioxins and –furans (PCDD/F), polychlorinated bifenyls (PCB), polyaromatic hydrocarbons (PAH), bis(2-ethylhexyl)phtlalate (DEHP), perfluorinated compounds (PFC), linear alkyl-benzene sulfonate (LAS), nonylphenol and nonylphenol ethoxylate (NP+NPEO), and brominated flame retardants including polybrominated diphenylethers (PBDE), hexabromocyclododecane (HBCD) and tetrabromobisphenol A (TBBPA). Moreover the occurrence of 25 different pharmaceuticals in digestate was determined. Several hazardous organic compounds and pharmaceuticals were found in all digestates from the biogas plants included in the study. The concentrations varied a lot both between the plants and between samples taken from the same plant at different times. The concentrations measured from the digestates were at the same level than the values found in the literature for wastewater sludge or biogas plant digestates in other European countries. All the digestates produced from various waste materials, such as waste water sludge, municipal bio-waste, manure, and by-products from food industry, contained some hazardous organic compounds. Sta-tistically significant correlations were observed for three different pharmaceuticals when waste water sludge was used as a substrate for biogas production. For the studied compounds, a calculated median soil burden of the compound after a single addition of the digestate as a fertilizer was at the same level to the annual atmospheric deposition of the compound or compound group in Finland or other Nordic countries. However, the soil burden for PBDEs (brominated flame retardants) coming from digestate was 400 – 1000 times higher compared to the annual atmos-pheric deposition. The soil burden for studied compounds coming from liquid fraction of digestate was either lower or at the same level as the soil burden coming from digestate as such or from its solid frac-tion. The risk for the food safety caused by the fertilizer use of a biogas plant digestate was evaluated based on the literature. According to the risk assessment, agricultural use of biogas plant end products is unlikely to cause significant risk for food safety in Finland for most of the compound groups studied. They are either degraded in the soil, or they are not taken up by the plant and further migrated in the food chain, or the concentration in the soil is at a very low level when also the uptake by the plant is minor. However with PBDEs, PFCs, HBCD and pharmaceuticals, further research is needed to be able to evaluate the risk caused by the fertilizer use of the biogas plant digestates.

Tallennettuna: